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Graphs are...

Everywhere

Internet
Social networks, communication
Biology, chemistry
Scientific modeling, meshes,
interactions

Figure sources: Franzosa et al. 2012, http://www.unc.edu/ unclng/Internet History.htm
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Graphs are...

Big

Internet - 50B+ pages indexed by Google, trillions of
hyperlinks
Facebook - 800M users, 100B friendships
Human brain - 100B neurons, 1,000T synaptic
connections

Figure sources: Facebook, Science Photo Library - PASIEKA via Getty Images
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Graphs are...

Complex

Graph analytics is listed as one of DARPA’s 23 toughest
mathematical challenges
Extremely variable - O(2n

2
) possible simple graph

structures for n vertices
Real-world graph characteristics makes computational
analytics tough

Skewed degree distributions
Small-world nature
Dynamic
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Scope of Fellowship Work
Key challenges and goals

Challenge: Irregular and skewed graphs make
parallelization difficult

Goal: Optimization for wide parallelization on current
and future manycore processors

Challenge: Storing large graphs in distributed memory

Layout - partitioning & ordering, what objectives and
constraints should be used?
Goal: Improve execution time (computation &
communication) for simple and complex analytics

Challenge: End-to-end execution of analytics on
supercomputers

End-to-end - read in graph data, create distributed
representation, perform analytic, output results
Goal: Using lessons learned to minimize end-to-end
execution times and allow scalability to massive graphs
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Optimizing for Wide Parallelism
GPUs on Blue Waters and Xeon Phis on other systems

Observation: most graph algorithms follow a tri-nested
loop structure

Optimize for this general algorithmic structure
Transform structure for more parallelism

1: Initialize temp/result arrays At[1..n], 1 ≤ t ≤ l. . l = O(1)
2: Initialize S1[1..n].
3: for i = 1 to niter do . niter = O(logn)
4: Initialize Si+1[1..n]. .

∑
i |Si| = O(m)

5: for j = 1 to |Si| do . |Si| = O(n)
6: u← Si[j]
7: Read/update At[u], 1 ≤ t ≤ l.
8: for k = 1 to |E[u]| do . |E[u]| = O(n)
9: v ← E[u][k]

10: Read/update At[v].
11: Read/update Si+1.

12: Read/update At[u].



Optimizing for Wide Parallelization
Approaches for improving intra-node parallelism

Hierachical expansion
Depending on degree of a vertex, parallelism handled
per-thread, per-warp, or per-multiprocessor

Local Manhattan Collapse
Inner two loops (across vertices and adjacent edges in
queue) collapsed into multiple single loop
per-multiprocessor

Global Manhattan Collapse
Inner two loops collapsed globally among all warps and
multiprocessors

General optimizations
Optimizations applicable to all parallel approaches -
cache consideration, coalescing memory access, explicit
shared memory usage, warp and MP-based primitives



Optimizing for Wide Parallelization
Performance results - K20 GPUs on Blue Waters

H: Hierarchical, ML: Local collapse, MG: Global collapse,
gray bar: Baseline

M: local collapse, C: coalescing memory access, S: shared
memory use, L: local team-based primitives

Up to 3.25× performance improvement relative to
optimized CPU code!
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Distributed-memory layout for graphs
Partitioning and ordering

Partitioning - how to distribute vertices and edges among
MPI tasks

Objectives - minimize both edges between tasks (cut)
and maximal number of edges coming out of any given
task (max cut)
Constraints - balance vertices per part and edges per part
Want balanced partitions with low cut to minimize
communication, computation, and idle time among
parts!

Ordering - how to order intra-part vertices and edges in
memory

Ordering affects execution time by optimizing for
memory access locality and cache utilization

Both are very difficult with small-world graphs



Distributed-memory layout for graphs
Partitioning and ordering part 2

Partitioning
Used PuLP partitioner for generating multi-constraint
multi-objective partitions
Only partitioner available that’s both scalable to graphs
tested on and able to satisfy objectives/constraints

Ordering
Used traditional bandwidth reduction methods from
numerical analysis
Also used more graph-centric methods based around
breadth-first search



Distributed-memory layout for graphs
Performance results

Speedups for subgraph counting algorithm for
communication and computation

Effective partitioning can make considerable impact,
ordering still important as graphs get large
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Large-scale graph analytics

Previous work for large graph analysis

External-memory systems - MapReduce/Hadoop-like,
flash memory
Tend to be slow and energy intensive

Using optimizations and techniques from fellowship work
efforts

Implemented analytic suite for large-scale analytics
(connectivity, k-core, community detection, PageRank,
centrality measures)
Ran on largest currently available public web crawl (3.5B
vertices, 129B edges)
First known work that has successfully analyzed graph of
that scale on a distributed memory system



Large-scale graph analytics

Ran algorithm suite on only 256 nodes of Blue Waters,
execution time in minutes

Novel insights gathered from analysis - largest
communities discovered, communities appear to have
scale-free or heavy-tailed distribution

Largest Communities Discovered (numbers in millions)

Pages Internal Links External Links Rep. Page

112 2126 32 YouTube
18 548 277 Tumblr

9 516 84 Creative Commons
8 186 85 WordPress
7 57 83 Amazon
6 41 21 Flickr



Summary of accomplishments

Optimizations for manycore parallelism result in up to a
3.25× performance improvement for graph analytics
executing on GPU

Modifications to in-memory storage of graph structure
results in up to a 1.48× performance improvement for
distributed analytics running with MPI+OpenMP on Blue
Waters

First-ever analysis of largest to-date web crawl (129B
hyperlinks) on a distributed memory system

Running on 256 nodes of Blue Waters, we are able to run
several complex graph analytics on the web crawl in
minutes of execution time



Summary of accomplishments - publications

High-performance Graph Analytics on Manycore
Processors

To appear in the Proceedings of the 29th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS15)

Distributed Graph Layout for Scalable Small-world
Network Analysis

In submission

Supercomputing for Web Graph Analytics

In submission

Poster at IPDPS15

Poster at SC15 (tentative)



Conclusions and Going Forward

Real-world graphs = big, complex, difficult to effectively
run on in parallel

Demonstrated methodology for thread-node-system level
optimization for small-world skewed graphs

Hopefully this work will enable:

Implementation of more complex analytics for large
networks
Scaling to larger networks and on larger future systems
Greater insight into larger networks than currently
possible
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