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Graphs are...

THE WHOLE INTERNET

m Everywhere

m Internet

m Social networks, communication

m Biology, chemistry

m Scientific modeling, meshes,
interactions

| ] Figure sources: Franzosa et al. 2012, http://www.unc.edu/ unclng/Internet History.htm
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Graphs are...

= Big
m Internet - 50B+ pages indexed by Google, trillions of
hyperlinks
m Facebook - 800M users, 100B friendships
m Human brain - 100B neurons, 1,000T synaptic
connections

| Figure sources: Facebook, Science Photo Library - PASIEKA via Getty Images
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m Complex

m Graph analytics is listed as one of DARPA's 23 toughest
mathematical challenges

m Extremely variable - 0(2”2) possible simple graph
structures for n vertices

m Real-world graph characteristics makes computational
analytics tough
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m Graph analytics is listed as one of DARPA's 23 toughest

mathematical challenges

m Extremely variable - 0(2”2) possible simple graph
structures for n vertices

m Real-world graph characteristics makes computational
analytics tough

m Skewed degree distributions
® Small-world nature
® Dynamic



m Challenge: Irregular and skewed graphs make
parallelization difficult

m Goal: Optimization for wide parallelization on current
and future manycore processors
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Scope of Fellowship Work

Key challenges and goals

m Challenge: Irregular and skewed graphs make
parallelization difficult
m Goal: Optimization for wide parallelization on current
and future manycore processors
m Challenge: Storing large graphs in distributed memory
m Layout - partitioning & ordering, what objectives and
constraints should be used?
m Goal: Improve execution time (computation &
communication) for simple and complex analytics
m Challenge: End-to-end execution of analytics on
supercomputers
m End-to-end - read in graph data, create distributed
representation, perform analytic, output results
m Goal: Using lessons learned to minimize end-to-end
execution times and allow scalability to massive graphs
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m Observation: most graph algorithms follow a tri-nested
loop structure

m Optimize for this general algorithmic structure
m Transform structure for more parallelism

Initialize temp/result arrays A¢[l..n], 1 <t <. >1=0(1)
Initialize S1[1..n].
for i = 1 to niter do > niter = O(logn)
Initialize Sjy1[1..n]. > >, 1Si| = O(m)
for j =1 to |S;| do > |S;] = O(n)
Read/update Atfu], 1 <t <.
for k = 1 to |E[u]| do > |Efu]] = O(n)
v E[u][k]

Read/update A[v].
Read/update Sjy1.
Read/update A¢[u].
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Optimizing for Wide Parallelization

Approaches for improving intra-node parallelism

m Hierachical expansion
m Depending on degree of a vertex, parallelism handled
per-thread, per-warp, or per-multiprocessor
m Local Manhattan Collapse
m Inner two loops (across vertices and adjacent edges in
queue) collapsed into multiple single loop
per-multiprocessor
m Global Manhattan Collapse
m Inner two loops collapsed globally among all warps and
multiprocessors
m General optimizations
m Optimizations applicable to all parallel approaches -
cache consideration, coalescing memory access, explicit
shared memory usage, warp and MP-based primitives



m H: Hierarchical, ML: Local collapse, MG: Global collapse,
gray bar: Baseline

m M: local collapse, C: coalescing memory access, S: shared
memory use, L: local team-based primitives

m Up to 3.25x performance improvement relative to
optimized CPU code!

Algorithm © | H A MG = ML

GTEPS
[

DBpecia ~ [# > B

XycoTest =~ H*®

Google ™ Ho=

Fickr = ||

Livedournal= [ &
wk2005 = [ @
indoChina = [
RvAT2M
anpom < b

@ uk-2002 T -

Wikinks = | ®

Optimizations ® | M(+C+S+)L A M(+C+S) B M(+C) | BaselinesM

HVIsR e
DBpedia '. > e
XyceTest 'l >e
k2002 < 8B
WikiLinks ~ . >
w005 = [ H B
IndoChina ~ . >
HVI5R ~ - >

& LiveJournal = . >

]



Distributed-memory layout for graphs

Partitioning and ordering

m Partitioning - how to distribute vertices and edges among
MPI tasks
m Objectives - minimize both edges between tasks (cut)
and maximal number of edges coming out of any given
task (max cut)
m Constraints - balance vertices per part and edges per part
m Want balanced partitions with low cut to minimize
communication, computation, and idle time among
parts!

m Ordering - how to order intra-part vertices and edges in
memory

m Ordering affects execution time by optimizing for
memory access locality and cache utilization

m Both are very difficult with small-world graphs



Distributed-memory layout for graphs

Partitioning and ordering part 2

m Partitioning
m Used PULP partitioner for generating multi-constraint
multi-objective partitions
m Only partitioner available that's both scalable to graphs
tested on and able to satisfy objectives/constraints
m Ordering
m Used traditional bandwidth reduction methods from
numerical analysis
m Also used more graph-centric methods based around
breadth-first search




Distributed-memory layout for graphs

Performance results

m Speedups for subgraph counting algorithm for
communication and computation

m Effective partitioning can make considerable impact,
ordering still important as graphs get large

Twitter ] uk-2005 ] sk-2005 ] Twitter ] uk-2005 ] sk-2005.
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Large-scale graph analytics

m Previous work for large graph analysis
m External-memory systems - MapReduce/Hadoop-like,
flash memory
m Tend to be slow and energy intensive

m Using optimizations and techniques from fellowship work
efforts

m Implemented analytic suite for large-scale analytics
(connectivity, k-core, community detection, PageRank,
centrality measures)

m Ran on largest currently available public web crawl (3.5B
vertices, 129B edges)

m First known work that has successfully analyzed graph of
that scale on a distributed memory system



m Ran algorithm suite on only 256 nodes of Blue Waters,
execution time in minutes

m Novel insights gathered from analysis - largest
communities discovered, communities appear to have
scale-free or heavy-tailed distribution

Largest Communities Discovered (numbers in millions)

Pages Internal Links External Links Rep. Page
112 2126 32 YouTube
18 548 277 Tumblr
9 516 84 Creative Commons
8 186 85 WordPress
7 57 83 Amazon
6 41 21 Flickr
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Summary of accomplishments

m Optimizations for manycore parallelism result in up to a
3.25x performance improvement for graph analytics
executing on GPU

m Modifications to in-memory storage of graph structure
results in up to a 1.48 x performance improvement for
distributed analytics running with MPI+OpenMP on Blue
Waters

m First-ever analysis of largest to-date web crawl (129B
hyperlinks) on a distributed memory system

m Running on 256 nodes of Blue Waters, we are able to run
several complex graph analytics on the web crawl in
minutes of execution time



Summary of accomplishments - publications

High-performance Graph Analytics on Manycore
Processors

m To appear in the Proceedings of the 29th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS15)

m Distributed Graph Layout for Scalable Small-world
Network Analysis

m In submission

Supercomputing for Web Graph Analytics

m In submission

Poster at IPDPS15
Poster at SC15 (tentative)



Conclusions and Going Forward

m Real-world graphs = big, complex, difficult to effectively
run on in parallel

m Demonstrated methodology for thread-node-system level
optimization for small-world skewed graphs

m Hopefully this work will enable:

m Implementation of more complex analytics for large
networks

m Scaling to larger networks and on larger future systems

m Greater insight into larger networks than currently
possible

m Thanks to Blue Waters and NCSA!
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